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ABSTRACT 
Mostly, economic data are afflicted with the problems of multicollinearity. This leads to inaccurate parameter 

estimates in Ordinary Least Squares. Therefore, this paper examined the efficiency of three methods of parameter 

estimation in regression model (Ordinary Least Squares(OLS), Ridge Regression and Least Absolute Shrinkage 

and Selection Operator (LASSO)) under multicollinearity. Monte-Carlo experiment of 1000 trials was carried out 

for four sample sizes (20, 50, 100 and 150), each with three levels of collinearity( Low, Mild and Severe). The 

findings from this paper showed that when the collinearity level between the predictors is low, irrespective of the 

sample size, OLS is the most efficient estimator. However, under mild or severe collinearity condition, irrespective 

of the sample size, Lasso is the most efficient estimator. 

INTRODUCTION  
Multicollinearity is one of the problems in computing the Ordinary Least Squares estimates in regression analysis. 

It occurs when the assumption of ‘‘no linear dependencies among the predictor variables’’ is violated. It can as 

well be defined as a situation whereby two or more of the explanatory variables considered in a model are related 

(Belsley, 1991; Murray, 2006). 

 

Multicollinearity can be perfect or inperfect. A situation occurs whereby two or more predictors considered in a 

model move exactly in step with each other and is called a perfect multicollinearity condition (Mrray, 2006). If 

multicollinearity is perfect, the regression coefficients of the X variables are indeterminate and their standard 

errors are infinite (Gujarati, 2004). When the multicollinearity in the data is inperfect, the linear combination of 

the relevant columns, though not zero, is small (Stewart, 1987). 

 

Multicollinearity comes into a model through the data collection method employed, model specification errors, 

constraints on the model or in the population being sampled, over determination of a model and so on (Gujarati, 

2004). 

 

Multicollinearity creates improper specification and inflation of variances of the coefficient estimates (Alin, 2010; 

Murray, 2006). 

 

When the assumptions of classical linear regression model are met, Least Squares estimator has minimum variance 

(Stock & Watson, 2007). However, if multicollinearity exists in a data, the OLS estimators, though may still be 

linear, unbiased, and asymptotically normally distributed, would no longer have the minimum variance among 

linear unbiased estimators, and as such, would be inefficient relative to other linear unbiased estimators. 

 

In this research, the performances of three estimation methods are investigated under the violation of the 

assumption of ‘‘no multicollinearity among the predictors being considered in a model’’. At various levels of 

collinearity and sample sizes, the absolute biases, variances and root mean square errors of parameter estimates 

from these estimators were examined to select the best estimator. 
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MATERIALS AND METHODS 
In this paper, a linear regression with a dependent and four independent variables is considered. While simulating 

the data for this paper through Monte-Carlo, multicollinearity was injected through the correlation structure. We 

then examined the efficiency of three methods of parameter estimations under that condition. 

 

Methods of Parameter Estimation Considered 
The three methods of estimating parameters of linear regression model with multicollinearity considered in this 

paper are: 

 

Ordinary Least Squares (OLS): The OLS is a naïve procedure of estimating the parameters of linear regression 

model. It is written as  

𝑦 = 𝑋𝛽 + 𝜖      (1) 

 

Where 𝑦 is an n by 1 column vector of dependent variable, 𝑋 is an n by p matrix of independent variables, 𝛽 is a 

p by 1 vector of the regression coefficients and 𝜖 is an n by 1 vector of random errors. 

The OLS aims at minimizing  

∑𝜖𝑖
2 = 𝜖𝑇𝜖

𝑛

𝑖=1

= (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) 

= 𝑦𝑇𝑦 − 2𝛽𝑇𝑋𝑇𝑦 + 𝛽𝑇𝑋𝑇𝑋𝛽    
The Least Squares estimators must satisfy  

𝜕(𝜖𝑇𝜖)

𝜕𝛽
= −2𝑋𝑇𝑦 + 2𝑋𝑇𝑋𝛽̂ = 0  

⇒ 𝑋𝑇𝑋𝛽̂ = 𝑋𝑇𝑦  

Thus, the Least Squares estimator of 𝛽is  

𝛽̂𝑂𝐿𝑆 = (𝑋
𝑇𝑋)−1𝑋𝑇𝑦     (2) 

   

Properties: 

Bias: 

Bias(𝛽̂𝑂𝐿𝑆) = 𝐸(𝛽̂𝑂𝐿𝑆) − 𝛽 

= 𝐸[(𝑋𝑇𝑋)−1𝑋𝑇𝑦] −  𝛽 

= 𝐸[(𝑋𝑇𝑋)−1𝑋𝑇(𝑋𝛽 + 𝜖)] − 𝛽 

= 𝛽 − 𝛽 

= 0 

Thus, Least Squares produce an unbiased estimator of the parameter 𝛽 in the linear regression model. 

 

Variance: 

 𝑣𝑎𝑟(𝛽̂𝑂𝐿𝑆) = 𝑣𝑎𝑟[(𝑋
𝑇𝑋)−1𝑋𝑇𝑦] 

= 𝐸[(𝑋𝑇𝑋)−1𝑋𝑇𝜖𝜖𝑇𝑋(𝑋𝑇𝑋)−1] 
= (𝑋𝑇𝑋)−1𝑋𝑇𝐸(𝜖𝜖𝑇)𝑋(𝑋𝑇𝑋)−1 

= (𝑋𝑇𝑋)−1𝑋𝑇𝜎2I𝑋(𝑋𝑇𝑋)−1 

⇒ 𝑣𝑎𝑟(𝛽̂𝑂𝐿𝑆) =  𝜎
2(𝑋𝑇𝑋)−1. 

 

Mean Square Error (MSE): 

𝑀𝑆𝐸(𝛽̂𝑂𝐿𝑆) = 𝐸(𝛽̂𝑂𝐿𝑆 − 𝛽)
2 

= 𝐸{𝛽̂𝑂𝐿𝑆 − 𝐸(𝛽̂𝑂𝐿𝑆) + 𝐸(𝛽̂𝑂𝐿𝑆) − 𝛽}
2 

  = 𝐸{[𝛽̂𝑂𝐿𝑆 − 𝐸(𝛽̂𝑂𝐿𝑆)] + [𝐸(𝛽̂𝑂𝐿𝑆) − 𝛽]}
2 

  = 𝐸{[𝛽̂𝑂𝐿𝑆 − 𝐸(𝛽̂𝑂𝐿𝑆)]
2 + [𝐸(𝛽̂𝑂𝐿𝑆) − 𝛽]

2} 

=  𝑣𝑎𝑟(𝛽̂𝑂𝐿𝑆) + [Bias(𝛽̂𝑂𝐿𝑆)]
2 

But the bias of OLS is zero,  ⇒ 𝑀𝑆𝐸(𝛽̂𝑂𝐿𝑆) =  𝑣𝑎𝑟(𝛽̂𝑂𝐿𝑆) = 𝜎
2(𝑋𝑇𝑋)−1 

 OLS estimator provides a baseline for comparison with more complex estimators. 
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Ridge Regression: 

The Ridge Regression (RR) (Hoerl and Kennard, 1970) is an estimation procedure based on the matrix 

(𝑋𝑇𝑋 + 𝜆𝐼), where 𝐼 denoting the 𝑝 ∗ 𝑝 identity matrix and𝜆 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑝), with 𝜆𝑖′𝑠 as the biasing 

parameters (Wan, 2002). Ridge Regression trade off bias for variance (Alin, 2010; Grewal et al., 2004). The 

reliability of point estimates of the coefficients increases by the reduction of inflated variances caused by 

multicollinearity in OLS when appropriate 𝜆 is chosen in ridge regression (Li et al., 2010). 

The procedure is 

𝛽̂𝑅 = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝛽

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝛽2𝐼   (3) 

 = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝛽

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + ‖𝛽‖2
2   

Differentiating (3) with respect to β and equating the result to zero, we obtain 

(𝑋𝑇𝑋 + 𝜆𝐼)𝛽̂𝑅 = 𝑋
𝑇𝑌 

𝛽̂𝑅 = (𝑋
𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌      (4) 

Where the ridge parameter (𝜆>0) is choosing arbitrarily. 

 

Properties: 

Bias: 

Bias(𝛽̂𝑅) = 𝐸(𝛽̂𝑅) − 𝛽 

𝐸(𝛽̂𝑅) = 𝐸{(𝑋
𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌} 

  = [𝐼 + 𝜆(𝑋𝑇𝑋)−1]−1𝐸(𝛽̂) 
= (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑋𝛽 

Since 𝐸(𝛽̂𝑅) ≠ 𝛽 for any 𝜆>0, then, ridge estimator is biased. 

Variance: 

𝑣𝑎𝑟(𝛽̂𝑅) = (𝑋
𝑇𝑋 + 𝜆𝐼)−1𝑣𝑎𝑟(𝛽)[(𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑋𝛽]𝑇 

= 𝜎2(𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑋{(𝑋𝑇𝑋 + 𝜆𝐼)−1}𝑇  

Mean Square Error (MSE): 

𝑀𝑆𝐸(𝛽̂𝑅) = 𝜎
2𝑡𝑟{(𝑋𝑇𝑋 + 𝜆𝐼)−2𝑋𝑇𝑋} + 𝜆2𝛽𝑇(𝑋𝑇𝑋 + 𝜆𝐼)−2𝛽. 

 

Least Absolute Shrinkage and Selection Operator (LASSO) 

Least absolute shrinkage and selection operator (Lasso) is a sparse model proposed by Tibshirani (1996) whereby 

most of the coefficients of the irrelevant variables considered in the modelare set to zero while other coefficients 

are shrunk. Lasso estimator which includes only the best subset of regressors considered in its final model has 

been used by many researchers to handle the problem of multicollinearity, such as (Fu and Knight, 2000; Zhao 

and Yu, 2006; Yuan and Lin, 2007;;Lounici, 2008). 

Lasso estimator uses the same procedure with ridge regression estimator, but the difference is that the squared 

ℓ2 norm (‖𝛽‖2
2) in the ridge has been replaced by ℓ1 norm (‖𝛽‖1). 

Lasso minimized the sum of squares of residuals subject to the sum of absolute value of the coefficient being less 

than a constant. 

𝛽̂𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝛽

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) +   𝜆‖𝛽‖1   (5) 

 

Monte Carlo Experiment 

The datasets utilized for this study were simulated from R (www.cran.r-project.org) statistical package. Four set 

of predictors with sizes 20, 50, 100 and 150 were generated from multivariate normal distribution. Also, the 

residual term was simulated from the univariate normal distribution with mean 0 and standard deviation 𝜎. The 

response is simulated with the relationship given by 

 𝑦 = 20 + 50𝑥1 + 80𝑥2 + 10𝑥3 + 3𝑥4 + 𝜀     (6) 

i.e. 𝛽′ = [𝛽0 = 20, 𝛽1 = 50, 𝛽2 = 80, 𝛽3 = 10, 𝛽4 = 3] 

The correlation structures used are; 

i. Low Collinearity(0.2 < 𝜌 ≤ 0.45) 

http://www.cran.r-project.org/
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𝜌 ∗= {[

1 0.40 0.35 0.25
. 1 0.38 0.45
.
.
.
.

1
.

0.40
1

]} 

ii. Mild Collinearity(0.8 ≤ 𝜌 < 0.9) 

𝜌 ∗= {[

1 0.83 0.83 0.87
. 1 0.84 0.84
.
.
.
.

1
.

0.85
1

]} 

iii. Severe Collinearity(0.9 ≤ 𝜌 < 0.9999) 

𝜌 ∗= {[

1 0.99 0.99 0.99
. 1 0.999 0.998
.
.
.
.

1
.

0.995
1

]} 

 

Each of the combinations was iterated 1000 times and the three estimators considered were assessed based on the 

absolute bias, variance and root mean square error of their parameter estimates. 

 

Averages of estimates of parameters [(𝛽̂0 + 𝛽̂1 + 𝛽̂2 + 𝛽̂3 + 𝛽̂4)/5] from the three criteria above (absolute bias, 

variance and RMSE) for the three estimators are computed. After that, the estimators were rankedaccording to 

their relative performance. 

 

RESULTS AND DISCUSSION 
The performances of the three estimators considered in this study under low, mild and severe 

collinearityconditions and at various sample sizes are presented and discussed here. To make it more generalized, 

the average values of absolute bias, variance and RMSE of the parameter estimates at the three levels of 

collinearity (low, mild and severe) and four sample sizes (n=20, n=50, n=100 and n=150) are computed. This 

allows us to see, on average, foe a given criterion, at each sample size, which estimator is the best in terms of 

having lowest average value. 

 

Table 1: Average of estimates of parameters from the various criteria 

Criteria Sample Size Level of 

Collinearity 

Estimates 

OLS Ridge Lasso 

 

 

Absolute Bias 

n=20 Low 1725.079 1525.087 1725.135 

Mild 1576.919 1576.690 1576.523 

Severe 9059.565 7915.997 7518.999 

n=50 Low 1101.369 1101.386 1101.428 

Mild 984.6337 984.4975 984.4868 

Severe 5780.961 4717.114 4518.816 

n=100 Low 761.9487 761.9568 761.9781 

Mild 696.5932 696.5215 696.5071 

Severe 3779.616 2791.450 2661.600 

n=150 Low 634.1306 634.4913 634.5297 

Mild 568.2022 568.1277 568.1156 

Severe 3257.156 2285.693 2174.931 

 

 

 

Variance 

n=20 Low 23658043 23658306 23658404 

Mild 19170828 19165840 19163438 

Severe 578952121 474056937 440010063 

n=50 Low 9360877 9361090 9361265 

Mild 7335220 7333004 7332956 

Severe 245680187 183263902 172191181 

n=100 Low 4558650 4558738 4559042 

Mild 3746132 3745378 3745302 



  
[Badawaire* 5(2): February, 2018]                                                                            ISSN 2349-4506 
  Impact Factor: 3.799 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [22] 

Severe 10278835 65479536 60841448 

n=150 Low 3104887 3105005 3105297 

Mild 2445341 2444641 2444581 

Severe 75565712 44194248 40810412 

 

 

RMSE 

n=20 Low 2195.891 2195.900 2195.992 

Mild 1988.571 1988.280 1988.116 

Severe 11242.091 10174.941 9803.312 

n=50 Low 1381.303 1381.324 1381.397 

Mild 1230.100 1229.893 1229.873 

Severe 7318.058 6323.498 6129.644 

n=100 Low 962.1928 962.1981 962.2022 

Mild 878.6355 878.4742 878.4466 

Severe 4736.598 3782.861 3646.823 

n=150 Low 794.1306 794.1492 794.2007 

Mild 710.1862 710.0991 710.0867 

Severe 4060.467 3107.574 2986.482 

 

From table 1 above, it can be observed that the absolute biases, variances and root mean square errors of all the 

estimators decreases as the sample size increases. 

 

Results in table 1 for the estimators are ranked for each criterion and at each sample size, from the one with lowest 

average value as 1, to the one with highest average value as 3. The ranks are presented in table 2 below. 

  

Table 2. Ranks of the Estimators Using Various Criteria 

Criteria Sample Size Level of 

Collinearity 

Estimators 

OLS Ridge Lasso 

 

 

Absolute Bias 

 

n=20 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

n=50 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

n=100 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

n=150 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

 

Variance 

 

n=20 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

n=50 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

n=100 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

n=150 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

 

 

n=20 

Low 1 2 3 

Mild 3 2 1 



  
[Badawaire* 5(2): February, 2018]                                                                            ISSN 2349-4506 
  Impact Factor: 3.799 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [23] 

 

 

RMSE 

Severe 3 2 1 

 

 

n=50 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

n=100 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

n=150 

Low 1 2 3 

Mild 3 2 1 

Severe 3 2 1 

 

From table 2 above it could be deduced that, when the collinearity level between the predictors is low, at all the 

sample sizes considered, OLS has the smallest ranks in all the three criteria for assessment. It can as well be 

observed that when the collinearity level between the predictors is mild or severe, at all the sample sizes 

considered, Lasso estimator consistently has the smallest ranks in all the three criteria. 

 

From table 2 above, the table of preference of these estimators at varying degree of multicollinearity and at 

different sample size is formed, with the estimator having rank 1 as the most preferred estimator. 

 

Table 3: Preference of the estimators 

Criteria Sample Size Collinearity Level Most Preferred 

Estimator 

 

 

 

 

 

Absolute Bias 

 

n=20 

Low OLS 

Mild Lasso 

Severe Lasso 

 

n=50 

Low OLS 

Mild Lasso 

Severe Lasso 

 

n=100 

Low OLS 

Mild Lasso 

Severe Lasso 

 

n=150 

Low OLS 

Mild Lasso 

Severe Lasso 

 

 

 

 

 

 

Variance 

 

n=20 

Low OLS 

Mild Lasso 

Severe Lasso 

 

n=50 

Low OLS 

Mild Lasso 

Severe Lasso 

 

n=100 

Low OLS 

Mild Lasso 

Severe Lasso 

 

n=150 

Low OLS 

Mild Lasso 

Severe Lasso 

 

 

 

 

 

 

n=20 

Low OLS 

Mild Lasso 

Severe Lasso 

 

n=50 

Low OLS 

Mild Lasso 
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From table 3 above, it can be posited that OLS is the most preferred estimator at all the four sample sizes using 

both the criteria when the collinearity level is low, but when the collinearity level between the regressors is mild 

or severe, going by the three criteria and at all the four sample sizes, Lasso is the most preferred estimator. 

 

CONCLUSION 
In this study, the efficiency of four methods of parameter estimation when the assumption of ‘’no multicollinearity 

among the predictors considered in a model’’ is violated is investigated.Results from Monte Carlo experiments 

have shown that under low collinearity condition, irrespective of the sample size, OLS is the most efficient 

estimator. 

 

Again when the collinearity condition between the predictors is mild or severe, irrespective of the sample size, 

Lasso is the most efficient estimator. 

 

RMSE Severe Lasso 

  

n=100 

Low OLS 

Mild Lasso 

Severe Lasso 

 

n=150 

Low OLS 

Mild Lasso 

Severe Lasso 
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